
CS522 - Partial Di¤erential Equations
Tibor Jánosi
April 5, 2005

1 Numerical Di¤erentiation

In principle, di¤erentiation is a simple operation. Indeed, given a function speci�ed as a
closed-form formula, its di¤erentiation involves the mechanical application of the chain
rule, and of the rules that refer to the di¤erentiation of elementary functions. Numerical
di¤erentiation is more challenging. We will now understand some of the di¢ culties.
Consider an example when the function to di¤erentiate is inferred based on a set of

sampled values (measurements), and these measurements are a¤ected by noise. If one
interpolates the function so that the interpolated function "goes" through all measured
points, the implied function derivative will often have no relationship to the underlying
"truth." Figure 1 below illustrates this point.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
Effect of Noise on Function Values and Numerical Differentials

x

Fu
nc

tio
n 

va
lu

es

log(1+x)
log(1+x)+noise

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

x

D
iff

er
en

tia
l

(e
xa

ct
 a

nd
 a

pp
ro

xi
m

at
e)

1/(1+x)

The noise is normal, with mu=0 and sigma=0.05.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5
Effect of Noise on Function Values and Numerical Differentials

x

Fu
nc

tio
n 

va
lu

es

log(1+x)
log(1+x)+noise

0 1 2 3 4 5 6 7 8 9 10
-2

-1

0

1

2

x

D
iff

er
en

tia
l

(e
xa

ct
 a

nd
 a

pp
ro

xi
m

at
e)

D
iff

er
en

tia
l

(e
xa

ct
 a

nd
 a

pp
ro

xi
m

at
e)

1/(1+x)

The noise is normal, with mu=0 and sigma=0.05.

Figure 1: E¤ect of noise on the inferred value of numerical derivatives. Functions inter-
polated from noisy measurements should not be used directly to generate approximate
values for their derivatives.

In our example, a simple, well-behaved function is perturbed by normal noise with

1



0 mean and standard deviation 0.05. On the graph, the values of the noisy function
are practically indistinguishable from the unperturbed function. Indeed, the noisy values
could be used directly in certain applications; for example, to integrate the function. If
we use these perturbed values to compute numerical derivatives, however, the results bear
no relation to the underlying reality.
So what can one do? One solution is to infer a reasonably smooth function from the

noisy measurements, then use this function to compute approximate derivatives. If one
knows the general form of the underlying function, then a least-squares method can be
used to infer values for the unknown parameters. Once these parameters are determined,
one can di¤erentiate the function either numerically, or analytically.
It is, of course, possible for the underlying "true" function not to be known. In

such cases one can try to choose functions whose general shape is in agreement with
the measured data, or use spline techniques to approximate the unknown underlying
function. Such methods are often reasonably successful, but they involve some amount of
experimentation before obtaining a satisfactory outcome.

1.1 Techniques for Di¤erentiation

The simplest - and perhaps most obvious - technique is that of functions provided as
closed-form formulas. Such functions can be di¤erentiated "by hand," or by using symbolic
tools like Mathematica. The result can then be implemented directly.

1.1.1 Automated Di¤erentiation

A generalization of this idea resulted in the idea of automated di¤erentiation. Even if a
function is not available as a closed-form formula, the program that computes it consists
of a (perhaps very long) sequence of elementary operations, which can be seen as function
applications. The derivatives of such elementary functions are known, so all one has to
do is to suitably combine these derivatives (by using the chain rule) in order to obtain
the derivative of the initial function. It is thus possible to rewrite the source code of a
function in order to generate the derivative of the respective function with respect to one,
or even all of its input arguments.
In practice, there are many problems that automated di¤erentiation must overcome.

Also, there are some inherent limitations. What should happen, for example, if certain
libraries are only available in compiled form - should one try to reverse engineer them and
develop automated di¤erentiation for binary code as well? But what if legal impediments
prevent libraries from being reverse engineered?
Despite some of these problems, automated di¤erentiation enjoys increasing popular-

ity, due to the high precision of these methods, and due to the low computational cost
that they entail.

2



1.1.2 Finite Di¤erences

Consider a di¤erentiable function1 f : R ! R, and the usual de�nition of the derivative
f
0
(x) = limh!0

f(x+h)�f(x)
h

. Traditionally, di¤erentiation has been approached as a purely
numerical problem, and the limit above has been approximated by using �nite di¤erences.
Consider the Taylor-series expansions of function f around x:

f(x+ h) = f(x) +
1

1!
f
0
(x)h+

1

2!
f
00
(x)h2 +

1

3!
f
000
(x)h3 + :::

f(x� h) = f(x)� 1

1!
f
0
(x)h+

1

2!
f
00
(x)h2 � 1

3!
f
000
(x)h3 + :::

Let us now examine at the following �nite-di¤erence approximations of the derivative:

f 0(x) =
f(x+ h)� f(x)

h
� 1

2!
f
00
(x)h� 1

3!
f
000
(x)h2 � :::

f 0(x) =
f(x)� f(x� h)

h
+
1

2!
f
00
(x)h� 1

3!
f
000
(x)h2 + :::

f 0(x) =
f(x+ h)� f(x� h)

2h
� 2

3!
f
000
(x)h+ :::

Assuming that h is small, and ignoring all terms containing h we get the following
approximations:

f 0(x) � f(x+ h)� f(x)
h

f 0(x) � f(x)� f(x� h)
h

f 0(x) � f(x+ h)� f(x� h)
2h

The three methods to compute numerical derivatives are called "forward approxima-
tion," "backward approximation," and "symmetric approximation," respectively, and all
of them are exact in the limit. For �nite values of h, the residual term of the forward and
backward approximation is O(h), while the residual term of the symmetric approximation
is O(h2).

1.1.3 Richardson�s Extrapolation

The �nite precision of numerical computations can severely limit our practical ability to
use any of the three �nite-di¤erences approximation given above. In other words, we might
not reasonably approach the limit h! 0. Richardson�s method can help us overcome this
di¢ culty by extrapolating the value obtained for the derivative for �nite h�s to the point
h = 0.

1In the following we will implicitly assume that functions have all the properties that are needed in
the context that we are using them.

3



Let us denote by f
0
(h) the approximate value of the derivative f

0
(x), computed for a

step size of h. Further, let us assume that a relationship of the form given below holds:

f
0
(h) = a0 + a1h

p +O(hr); r > p > 0

The value that we want to compute is f
0
(0) = a0. Let us now compute function f

0
for

two values of h, h1, and h2. We get the following:

f
0
(h1) = a0 + a1h

p
1 +O(h

r
1)

f
0
(h2) = a0 + a1h

p
2 +O(h

r
2)

Ignoring the residuals, we can solve for a0:

f
0
(0) = a0 = f

0
(h1) +

f
0
(h1)� f

0
(h2)�

h2
h1

�p
� 1

Note that f
0
(0) is still an approximation. This idea can be extrapolated so that more

terms are considered in the expansion of f
0
(h) given above; if n terms are considered,

then n approximate values of the derivative must be computed for n di¤erent values of
h. The resulting system of equations can then be solved to recover the value of a0. For
su¢ ciently well-behaved functions f , this method can produce very accurate results.

1.1.4 Higher-Order Derivatives

Analogously to the mathematical de�nition of higher-order derivatives, we can de�ne
�nite-di¤erence approximations to such derivatives using derivatives of lower order.
Consider the mathematical de�nition of the second derivative:

f
00
(x) = lim

h!0

f 0(x+ h)� f 0(x)
h

Since we have several ways to approximate �rst-order derivatives, we will also have
several approximations of the second derivative. We will, however, only consider the
symmetric central-di¤erence approximation given below:

f
00
(x) � f

0
(x)� f 0(x� h)

h

�
f(x+h)�f(x)

h
� f(x)�f(x�h)

h

h

=
f(x+ h)� 2f(x) + f(x� h)

h2

As it can be seen, the formula above is the backward di¤erence of the forward di¤erence
approximations of the �rst derivative. This approximation is accurate to the order of
O(h2).

4



1.2 Partial Di¤erential Equations

For our immediate purposes, the most important di¤erential equation will be the heat
equation:

@f

@t
(t; x) =

@2f

@x2
(t; x)

Because the highest-order partial derivative that appears in equation above is 2, this
is a second-order partial derivative equation.
Let us consider the general form of a second-order partial di¤erential equation of a

function f with arguments t and x:

c1
@2f

@x2
+ c2

@2f

@x@t
+ c3

@2f

@t2
+ c4

@f

@x
+ c5

@f

@t
+ c5f + c6 = 0

Such partial di¤erential equations are classi�ed with respect to the sign of the ex-
pression E = c22 � 4c1c3 as hyperbolic (if E > 0), parabolic (if E = 0), and elliptic (if
E < 0).
Informally speaking, hyperbolic pde�s describe time-dependent processes that are not

evolving toward a steady state, parabolic pde�s describe processes that are evolving toward
a steady state, while elliptic processes have already reached a steady state (their solution
is not time-dependent). When the coe¢ cients ci are not constant, the equation can change
type, so this classi�cation is of limited value.
The heat equation is a parabolic equation.

1.2.1 Initial and Boundary Conditions

As in the case of regular di¤erential equations, solving a pde yields a family of solutions.
To select a unique function from such a family one needs to impose further conditions;
typically these consist of the initial condition and boundary conditions. For the speci�c
case of the heat equation as applied to the problem of option values, our set of conditions
will consist of the following:

f(0; x) = f0(x)

lim
x!1

f(t; x) = f1

lim
x!�1

f(t; x) = f�1

In the formula above f0 is a function independent of t, while f1 and f�1 are constants.
As we will see below, practical considerations prevent us from directly using limits at
in�nity. Rather, we will choose a pair of values xmin and xmax so that they represent
suitable approximations of 1 and �1, respectively. We then obtain the following set of
conditions:

f(0; x) = f0(x)

f(t; xmax) = f1

f(t; xmin) = f�1

5



1.2.2 Semidiscrete Solutions

The heat equation can be solved by discretizing the space variable x while leaving the
time variable t continuous. To achieve this, we �rst divide the interval [xmin; xmax] into
an integer number of subintervals of length �x; let N = xmax�xmin

�x
. In the second stage we

associate a function fi(t), with each point xi = xmin + i�x, where 0 < i < N . Using the
symmetric central-di¤erence approximation for the second partial derivative with respect
to x, we get the following:

f
0

i (t) =
fi+1(t)� 2fi(t) + fi�1(t)

(�x)2
; 1 < i < N � 1

The initial and boundary conditions yield the following relations:

fi(0) = f0(xi); 1 < i < N � 1
fN(t) = f1

f0(t) = f�1

In e¤ect, this method corresponds to computing the curves that result when we slice
the surface f(t; x) with planes of the form x = xi; hence, this approach is called the
method of lines.
By introducing the notation F (t) = [f1(t) f2(t) f3(t) ::: fn�1(t)]T , where �T represents

the transpose operator, we obtain the following system of ordinary di¤erential equations:

F
0
(t) =

1

(�x)2

266664
�2 1 0 : : : 0
1 �2 1 : : : 0
0 1 �2 : : : 0
: : : : : : : : : : : : : : :
0 0 0 : : : �2

377775
| {z }

C

F (t) +
1

(�x)2

266664
f�1
0
0
: : :
f1

377775

The matrix of coe¢ cients C is of size (N � 1)2, but only 3(N � 1) � 2 = 3N � 5
coe¢ cients are non-zero. The higher N grows (i.e. the smaller �x becomes), the smaller
the proportion of non-zero coe¢ cients becomes. In the limit, the proportion of non-zero
coe¢ cients tends to 0, but even for N = 100 we only get a ratio of approximately 3% for
such coe¢ cients.
For the bene�t of readers with more background in numerical analysis, we note here

that the system of ordinary di¤erential equations above tends to be very sti¤, thus one
must be careful to choose an appropriate method to solve it.

Sparse Matrices Matrices whose proportion of non-zero coe¢ cients is very small with
respect to their total number of coe¢ cients are called sparse matrices. Sparse matrices
are commonly encountered in several important areas of numerical computations. Spe-
cial techniques have been developed to represent and manipulate such matrices so as to

6



minimize the amount of memory that would be wasted if the full matrix were explicitly
represented. In this area, a lot of e¤ort is expended to de�ne matrix algorithms that
minimize the number of new non-zero elements (the "�ll") that are produced as a result
of various matrix operations. The speci�c sparse matrix representation and algorithms
that are chosen depend in general on the degree of sparsity, as well as on the sparsity
pattern (i.e. the distribution of non-zero coe¢ cients) exhibited by the matrices at hand.
Matrices encoded using sparse matrix representations incur an overhead with respect

to regular matrices when various operations are performed. Depending on this overhead,
any advantage related to memory savings can be swamped by the increased processing
time that the sparse matrix representation entails. As a very approximate rule of thumb,
one should probably not contemplate using sparse matrix representations unless the total
number of coe¢ cients coe¢ cients is at least of a few thousand (or even higher).
For the example at hand, we have a particularly simple sparsity pattern which we

could address by linearizing the matrix. To achieve this, we can transfer all coe¢ cients
into an array C linear of size 3N �5, going line by line in the original matrix C. We obtain
the following representation of C linear:

C linear =
�
�2 1 1 �2 1 : : : �2

�
Given the pair of indices2 (i; j) in matrix C, the corresponding index k in array C linear

will be given by [3(i � 1) �min(i � 1; 1)] + [j �max(i � 2; 0)].3 Of course, the previous
formula assumes that (i; j) denotes a non-zero coe¢ cient. Can you establish what relation
must hold between i and j so that this assumption is true?
Matlab provides support for sparse-matrix computations; type lookfor sparse at your

Matlab prompt to learn more about this topic.

1.2.3 Discrete Solutions

In the preceding section we have discretized the space dimension x while leaving the time
dimension t continuous. We can, of course, also discretize the time dimension.
As before, we �rst divide the interval [xmin; xmax] into an integer number of subintervals

of length �x; let Nx = xmax�xmin
�x

. Next, we choose a su¢ ciently large maximum value of t,
tmax, and we divide the interval [0; tmax] into an integer number of subintervals of length
�t; let Nt = tmax�0

�t
. These two steps fully discretize the domain of the pde at hand. The

corresponding situation is illustrated in �gure 2.
We introduce the notation fmn = f(m�t; xmin + n�x), 0 � m � Nt, 0 � n � Nx, to

denote the values of the function at the points of the resulting mesh.
Using the various �nite-di¤erence approximations for the �rst and second-order deriv-

ative, we can now write down the equations needed for solving the heat equation.

2Here, as elsewhere in the course, we stick with Matlab�s convention and use 1-based indices.
3Try to understand how this formula was derived. Our use of parentheses should help you in this

process.

7



xmin xmin+ndx xmax

mdt

tmax

x

tim
e

"upper boundary"

"lower boundary"

"initial condition"

passing of time

xmin xmin+ndx xmax

mdt

tmax

x

tim
e

"upper boundary"

"lower boundary"

"initial condition"

passing of time

Figure 2: Illustration of the heat equation�s discretized domain.

The Explicit Finite-Di¤erence Method We choose the forward di¤erence equation
for the time derivative, and the symmetric central di¤erence for the space derivative.
Ignoring residual terms we get the approximate equality below:

fm+1n � fmn
�t

=
fmn+1 � 2fmn + fmn�1

(�x)2
; 0 < m < Nt; 0 < n < Nx

Introducing the notation � = �t
(�x)2

, we get:

fm+1n = �fmn+1 + (1� 2�)fmn + �fmn�1; 0 < m < Nt; 0 < n < Nx

The relationship between these quantities is illustrated in �gure 3.
Since the values f 0n = f(xmin + n�x; 0) = f0(xmin + n�x), 0 � n � Nx, and fm0 = f�1

and fmNx = f1, 0 � m � Nt are known (given), we can compute the values of the function
at all points in the domain of interest.
In principle, we know how to compute an approximate solution for the heat equation.

But how good will this solution be? Can we understand how the quality of the result
depends on the choice of �x and �t?
The explicit �nite di¤erence method has an error term of the form O(�t) +O((�x)2),

i.e. it is �rst-order accurate in time and second-order accurate in space.

8



f(n-1,m) f(n,m) f(n+1,m)

f(n,m+1)

f(n-1,m) f(n,m) f(n+1,m)

f(n,m+1)

Figure 3: Relationship between known values (in black), and the newly computed value
(in red) in the explicit �nite-di¤erence discretization.

Ideally, the solution to a pde problem should be both stable and consistent. Loosely
speaking, stability means that small perturbations do not cause the corresponding ap-
proximate solutions to diverge without bound. Consistency means that as the step sizes
�x and �t decrease toward 0 the truncation error (the error due to the discrete approx-
imation of the derivative) decreases toward 0. For the convergence of an approximate
solution to the true solution of the underlying problem it is necessary for the respective
solution to be both consistent and stable.
As we can see from the discussion of the error terms, the explicit �nite-di¤erence

method is consistent. Without providing more details, we will state that the �nite-
di¤erence method is stable if � � 1

2
, and not stable if � > 1

2
.

The Fully-Implicit Method We again use the forward di¤erence for the time deriva-
tive and the symmetric central-di¤erence approximation for the second-order space deriv-
ative. For the latter second derivative, however, we will not choose the time coordinate
to be m�t, as we did before; we will �x it at (m+ 1)�t. We then get:

fm+1n � fmn
�t

=
fm+1n+1 � 2fm+1n + fm+1n�1

(�x)2
; 0 < m < Nt; 0 < n < Nx

Keeping the same interpretation for � = �t
(�x)2

, we get:

��fm+1n�1 + (1 + 2�)f
m+1
n � �fm+1n+1 = f

m
n ; 0 < m < Nt; 0 < n < Nx

The relationship between these quantities is illustrated in �gure 4.
As the reader can immediately see, the fully implicit method does not allow for the

immediate computation of the new function values. Rather, a system of equations must

9



f(n-1,m+1) f(n,m+1) f(n+1,m+1)

f(n,m)

f(n-1,m+1) f(n,m+1) f(n+1,m+1)f(n-1,m+1) f(n,m+1) f(n+1,m+1)

f(n,m)

Figure 4: Relationship between known value (in black), and the newly computed values
(in red) in the fully implicit �nite-di¤erence discretization.

be set up and solved. Let Fm =
�
fm1 fm2 fm3 � � � fmNx�1

�T
, be column of unknown

values at time m�t (and note that fm0 and fmNx are known). We obtain the following
system of equations:26666664

1 + 2� �� 0 : : : 0 0
�� 1 + 2� �� : : : 0 0
0 �� 1 + 2� : : : 0 0
: : : : : : : : : : : : : : : : : :
0 0 0 : : : 1 + 2� ��
0 0 0 : : : �� 1 + 2�

37777775
| {z }

M

Fm+1 = Fm + �

26666664
fm+10

0
0
: : :
0

fm+1Nx

37777775
| {z }

bm

We can write the relation above in the much more compact form:

MFm+1 = bm

If M were invertible, we could immediate compute Fm+1 =M�1bm.
But is M invertible? Not necessarily, if � is arbitrary. However, if � > 0, as it must

be in this case, M is invertible. We prove this statement below.

Theorem 1 (Gershgorin�s Circle Theorem) Let A be a complex square matrix A = (aij)i;j=1;n
and let � be equal to one of its eigenvalues. De�ne Ri =

Pn
j=1
i6=j
jaijj, for each i, 1 � i � n.

Then � will be in at least one of the disks Di : fz j jz � aiij � Rig.

Proof. Let � be an eigenvalue of A, and v =
�
v1 v2 : : : vn

�
its corresponding eigenvec-

tor. We immediately get that Av = �v. Further, choose i� so that jvi�j = maxfjvjj j 1 �
j � ng. We immediately get that jvi�j > 0 (why?).

10



Now, consider the i�-th component of the equality Av = �v; we get:
nX
j=1

ai�jvj = �vi�

We can rewrite these equations as follows:
nX
j=1
j 6=i�

ai�jvj = (�� ai�i�)vi�

Finally, we have:

j�� ai�i�j =

��������
nX
j=1
j 6=i�

ai�j
vj
vi�

�������� =
nX
j=1
j 6=i�

jai�jj
���� vjvi�

����|{z}
�1

�
nX
j=1
j 6=i�

jai�jj

Lemma 2 Matrix M de�ned below has no negative real eigenvalues.

M =

26666664
2 �1 0 : : : 0 0
�1 2 �1 : : : 0 0
0 �1 2 : : : 0 0
: : : : : : : : : : : : : : : : : :
0 0 0 : : : 2 �1
0 0 0 : : : �1 2

37777775
Proof. By applying Gershgorin�s theorem we immediately get that all eigenvalues of
matrixM must be in at least one of the disks given below:

D1 : fz j jz � 2j � 1g
D2 : fz j jz � 2j � 2g

But D1 is included in D2, so we conclude that all eigenvalues of M must be in disk
D2. HenceM has no negative eigenvalues.

Theorem 3 For any real, positive �, matrix M (as de�ned above) is invertible.

Proof. Let us assume that M is not invertible. Then det(M) = 0. We can immediately
establish the obvious equality M = I + �M, where I is the identity matrix of size n, and
M has been de�ned in the previous lemma. We now have:

det(M) = 0

det(I + �M) = 0

det(M+
1

�
I) = 0

11



The last relation implies that equation My = � 1
�
y admits a non-trivial solution (i.e.

y 6= 0), which is the same thing as saying that one of M�s eigenvalues must be � 1
�
.

Since we assumed that � > 0, this means thatM admits a negative eigenvalue. We have
reached a contradiction, hence M is not invertible.
Returning now to the problem of solving the system of equations MFm+1 = Fm, we

know that matrix M is in fact non-singular for any choice of �x > 0 and �t > 0. Hence
Fm+1 =M�1Fm. However, this approach is not usually pursued. Without providing more
details, we state that in general matrix inversions are avoided in numerical computations;
they are expensive and can be sensitive to small errors in the initial matrix (if the matrix is
ill-conditioned). In this case there is a further disadvantage: while the original matrix M
is tridiagonal, hence sparse, its inverseM�1 would be dense. If we could avoid computing
M�1 we could perhaps avoid the need to store (Nx�1)2 coe¢ cients, thus greatly reducing
the memory consumption of our algorithm.
One approach to solving the system of equations is to use the so-called LU ("lower-

upper") decomposition of matrix M . In a general LU decomposition of a matrix A,
the respective matrix will be written as the product LAUA, where A is a lower-triangular
matrix with unitary main diagonal (i.e. the main diagonal contains only 1�s), and UA is an
upper-triangular matrix. Given the special form of our matrix M , its LU decomposition
is especially simple to obtain by solving the following matrix equation:26666664

1 + 2� �� 0 : : : 0 0
�� 1 + 2� �� : : : 0 0
0 �� 1 + 2� : : : 0 0
: : : : : : : : : : : : : : : : : :
0 0 0 : : : 1 + 2� ��
0 0 0 : : : �� 1 + 2�

37777775 =

=

26666664
1 0 0 : : : 0 0
l1 1 0 : : : 0 0
0 l2 1 : : : 0 0
: : : : : : : : : : : : : : : : : :
0 0 0 : : : 1 0
0 0 0 : : : lNx�2 1

37777775
| {z }

L

26666664
d1 u1 0 : : : 0 0
0 d2 u2 : : : 0 0
0 0 d3 : : : 0 0
: : : : : : : : : : : : : : : : : :
0 0 0 : : : dNx�2 uNx�2
0 0 0 : : : 0 dNx�1

37777775
| {z }

U

We can easily solve this system of equations "by hand." First, by equating the terms
that give the coe¢ cient with indices (1; 1) of the result, we immediately obtain d1 = 1+2�.
The equations for the coe¢ cients with indices (i; i + 1) immediately yield the values
ui = ��, 0 < i < Nx � 1. Similarly, from the coe¢ cients with indices (i; i � 1) we
get that li�1di�1 = ��, 1 < i < Nx. This implies that li = � �

di
, 0 < i < Nx � 1.

Finally, we determine the values di by examining the equations that correspond to the
coe¢ cients (i; i) in the resulting matrix. We get that li�1ui�1 + di = 1 + 2�, 1 < i < Nx.
We immediately get that di = 1 + 2� � �2

di�1
, 1 < i < Nx. These relations allow us to

determine matrices L and U in a simple loop.

12



Note that we if we do not explicitly represent the 1�s on the main diagonal of LM ,
then we can represent both LM and UM in the same space that we used originally to store
M . This is important if we used a linearization method like the one described above.
We can now solve the system of equations in two steps:

LMv
m = bm

UMF
m+1 = vm

We can solve the �rst system of equations by "forward substitution" in one pass; the
second system can then be solved by "backward substitution." Can you estimate the
total number of operations (i.e. the number of additions, subtractions, multiplications
and divisions) needed to solve these systems?
At each step m we compute all the values fmn by solving the system of equations

MFm+1 = bm. The advantage of this method, however, is that its stability is much better
than that of the explicit �nite-di¤erence method; i.e. the time step �t can be signi�cantly
bigger relative to �x in the case of the fully implicit method.

The Crank-Nicholson Method Recall that the error term for both the explicit �nite-
di¤erence and fully implicit method was of the form O(�t) + O((�x)2). The Crank-
Nicholson method improves this error term to O((�t)2) +O((�x)2).
Let us recall the formulas we wrote for the explicit �nite-di¤erence method and the

fully implicit method:

fm+1n � fmn
�t

=
fmn+1 � 2fmn + fmn�1

(�x)2
; 0 < m < Nt; 0 < n < Nx

fm+1n � fmn
�t

=
fm+1n+1 � 2fm+1n + fm+1n�1

(�x)2
; 0 < m < Nt; 0 < n < Nx

We immediately obtain the following relation:

fm+1n � fmn
�t

=
1

2

�
fmn+1 � 2fmn + fmn�1

(�x)2
+
fm+1n+1 � 2fm+1n + fm+1n�1

(�x)2

�
Again, using the notation � = �t

(�x)2
, we get:

fm+1n � fmn =
1

2
�(fmn+1 � 2fmn + fmn�1 + fm+1n+1 � 2fm+1n + fm+1n�1 )

Separating the terms that refer to time m�t and time (m+ 1)�t we get:

�1
2
�fm+1n�1 + (1 + �)f

m+1
n � 1

2
�fm+1n+1 =

1

2
�fmn�1 + (1� �)fmn +

1

2
�fmn+1| {z }

Zmn

The relationship between these quantities is illustrated in �gure 5.

13



f(n-1,m+1) f(n,m+1) f(n+1,m+1)

f(n-1,m) f(n,m) f(n+1,m)

f(n-1,m+1) f(n,m+1) f(n+1,m+1)f(n-1,m+1) f(n,m+1) f(n+1,m+1)

f(n-1,m) f(n,m) f(n+1,m)

Figure 5: Relationship between known values (in black), and the newly computed values
(in red) in the Crank-Nicholson method.

By analogy to the fully implicit method above we can write the following system of
equations:26666664

1 + � �1
2
� 0 : : : 0 0

�1
2
� 1 + � �1

2
� : : : 0 0

0 �1
2
� 1 + � : : : 0 0

: : : : : : : : : : : : : : : : : :
0 0 0 : : : 1 + � �1

2
�

0 0 0 : : : �1
2
� 1 + �

37777775
| {z }

MCN

Fm+1 =

26666664
Zm1
Zm2
Zm3
: : :
ZmNx�2
ZmNx�1

37777775+
1

2
�

26666664
fm+10

0
0
: : :
0

fm+1Nx

37777775
| {z }

bmCN

We use the subscript CN to denote matrices related to the Crank-Nicholson method,
so that they are distinguishable from the analogous matrices we de�ned for the fully
implicit method. Also, we reused the de�nition Fm =

�
fm1 fm2 fm3 � � � fmNx�1

�T
.

The system of equationsMCNF
m+1 = bmCN can be solved by the method of LU decom-

position as described above.

14


